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Preface

Give thanks to God, who made necessary things simple, and complicated
things unnecessary.

Gregory Skovoroda, Ukrainian Thinker, 1722-1794

There is always another way to say the same thing that doesn’t look at all
like the way you said it before. I don’t know what the reason for this is. I
think it is somehow a representation of the simplicity of nature? Perhaps
a thing is simple if you can describe it fully in several different ways
without immediately knowing that you are describing the same thing.

Richard Feynman, Nobel Lecture, 1965

Theories of the known, which are described by different physical ideas
may be equivalent in all their predictions and are hence scientifically
indistinguishable. However, they are not psychologically identical when
trying to move from that base into the unknown. For different views
suggest different kinds of modifications which might be made and hence
are not equivalent in the hypotheses one generates from them in ones
attempt to understand what is not yet understood. I, therefore, think that
a good theoretical physicist today might find it useful to have a wide
range of physical viewpoints and mathematical expressions of the same
theory available to him.

Richard Feynman, Nobel Lecture, 1965

Formulations of General Relativity. Facing this title the prospective reader should

be thinking: What is there to formulate General Relativity? GR can be formulated

in one sentence: GR action functional is the integral of the scalar curvature over the

manifold. Everything else that is there to say about GR is the consequence of the
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Euler-Lagrange equations one obtains by extremising this action, together with the

action for matter fields. How can there be a book about ”formulations”? And why

plural? Is not there just the usual Einstein-Hilbert formulation as stated above?

A more sophisticated reader will know that there are several equivalent formula-

tions of General Relativity. There is the usual metric formulation, and then there is

an equivalent formulation in terms of tetrads. But this is all well-known. General

Relativity is about physical consequences of the dynamical postulate that fixes the

theory. There may be several equivalent ways to define the dynamics. But this does

not change the physics. So, one formulation is sufficient to unravel all the physics

predicted by the theory. The usual metric formulation is by far the most studied and

best understood. Why bother about developing any other equivalent formulation?

And then why write a book about such unnecessary alternatives?

This is when the above two quotes from the Richard Feynman Nobel lecture

become relevant. The first is about an empirical observation that theories that are

relevant for describing the world around us tend to admit many different equivalent,

but not obviously so, reformulations. The example Feynman has in mind is classical

electrodynamics, not gravity. Feynman also notices that there is a deep link between

the ”simplicity” of a theory, and the availability of many different not manifestly

equivalent descriptions. He goes further and proposes this as the criterion of sim-

plicity. This suggests that one can never fully appreciate the simplicity and beauty

of General Relativity without absorbing all the different available formulations of

this theory.

The second quote is a different, but not unrelated thought. There may be equiv-

alent formulations of a theory, all leading to the same physical predictions. But

such reformulations may be inequivalent if one decides to generalise. The example

of most relevance for Feynman is the Hamiltonian and Lagrangian description of

classical mechanics. The quantum generalisation of the Hamiltonian description

leads to the usual operator formalism for quantum theory. The generalisation of

the Lagrangian description leads to path integrals, which is arguably one of Feyn-

man’s main contributions to physics. These two equivalent formulations of classical

mechanics are certainly not equivalent in terms of the new structures that can be

generated from them. The same may well apply to gravity. We do not yet know

which of the many available formulations of gravity will lead to the next big step in

the quest for understanding the world around us.

So, the purpose of this book is to describe all the ”equivalent” formulations of

General Relativity that are known to the author, and that also put the geometry of

differential forms and fibre bundles at the forefront of the description of gravity.

What is meant by a ”formulation” here is a Lagrangian description, in which the

dynamical equations are obtained by extremising the corresponding action. This

gives the most economic way of defining the theory.
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Some of these equivalent formulations will likely be known to many readers. In

particular, this is the already mentioned formulation in terms of tetrads. If this was

the complete list, there would be no good reason to write this book.

What is known much less, and what really motivated this author to embark on

the present project, is that there are some special features of General Relativity in

four spacetime dimensions. These special features are related to coincidences that

occur precisely in four dimensions. Thus, in any dimension the Riemann curvature

can be viewed as a matrix mapping anti-symmetric rank two tensors again into

such tensors. And in four dimensions one also has the Hodge star operator that

maps anti-symmetric rank two tensors into such tensors. One can ask how these two

operations are related or compatible. It is then a simple to check but deep fact that a

metric is Einstein if and only if these two operations commute. This fact leads to

a whole series of chiral formulations of four dimensional General Relativity that

have no analogs in higher spacetime dimensions. It is the development of these

formulations, and contrasting them with the more known ones, that will occupy us

for the large part of this book. There is no coherent account of these developments

in the literature, certainly not in any book on General Relativity. It is our desire to

make such a coherent account available that was one of the main motivations for

writing this monograph.

Another motivation for writing this exposition was our desire to promote the

formalism(s) for GR that place the differential forms rather than metrics at the

forefront. Differential forms are arguably the simplest and most natural geometric

objects that can be placed on a smooth manifold, and are certainly simpler objects

than a metric. It turns out to be possible to describe GR using the powerful calculus

of differential forms and fibre bundles, which is largely due to

´

Elie Cartan, see

the next Chapter for more on this. This book is in particular aimed at giving an

expositions of possible formalisms that achieve this.

A related theme is that of spinors and spinorial description. As is well-known,

and as we will also emphasise in the book, spinors and differential forms are

essentially the same thing, with the Dirac operator being intimately related to the

exterior derivative operator . This means that as soon as differential forms are being

used as variables to describe the theory, the description has an interesting spinor

translation. Viewed in this way, the kinetic operators arising in the field equations

of formulations that use differential forms are various versions of the Dirac operator.

This becomes especially pronounced in the so-called first-order formulations where

field equations are first order in derivatives. These spinor aspects of gravity (and,

as we shall see, Yang-Mills theory too), absent in the usual metric description, is

another unifying theme of this book. In addition, the spinor description of gravity

simplifies link to some recent developments in the field of scattering amplitudes, as

we will touch on.
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The more familiar of formalisms that use differential forms rather than metrics is

that of tetrad (or vielbein, or moving frame, or soldering form) introduced by Cartan.

Historically, this formalism was first discovered in the context of two dimensions

by the French mathematician Jean-Gaston Darboux (Cartan’s PhD supervisor) in

late 19th century. It is particularly powerful in this context, as the two one-forms

that encode the metric information can be combined into a single complex-valued

one-form on the manifold. This is related to the fact that any 2-manifold is a

complex manifold. There is no direct analog of such a complexification trick in

four dimensions because there is no longer a unique choice of an almost complex

structure. But one gets a computationally powerful formalism in four dimensions via

chiral formulations referred to above. These formulations, in the case of Lorentzian

signature, bring into play complex-valued objects and in a certain sense provide the

analog of the complexification trick that works so well in two dimensions. They

also make a link to the twistor description of gravity, as we shall explain.

Our final introductory remark is about the Einstein’s cornerstone idea that gravity

is geometry. At the time when Einstein invented his theory, the only available to him

geometry was Riemannian geometry of metrics, described via the tensor calculus

of Ricci and Levi-Civita. Einstein learned this mathematics guided by his friend

and classmate Marcel Grossmann. It is thus no surprise that General Relativity

was formulated in the language of Riemannian geometry and tensor calculus. It

is still being developed and also taught to graduate students in that way. However,

already at the time of Einstein’s invention of GR

´

Elie Cartan was developing a

very different type of geometry, the geometry in which the key role was played

by differential forms and connections. His works, and works of those around him,

strongly influenced the subject of differential geometry, and it is now far more rich

and sophisticated than it was a hundred years ago. The Riemannian geometry is now

only its relatively small corner. This discussion is related to the theme of the present

book because various different formulations of GR that we develop place various

different geometric constructions at the forefront. In particular, the geometry of fibre

bundles plays much more important role than it does in the usual description of GR.

It is thus certainly true that gravity continues to be geometry in the developments on

this book, it is only that the word geometry is being understood more broadly than

in the metric GR context. We do not yet know which of these ”geometries” is more

fundamental than others, but a good researcher will certainly want to keep his/her

mind open and learn all the available options.

The target audience for this book are postgraduate students interested in gravity,

as well as already established researchers. To give encouraging words to the first

audience, the we would like to recall our own experience as a student. This author

remembers very distinctly that it was easiest to study, understand and prepare for

exams on classical mechanics by reading Vladimir Arnold’s book on the subject.
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And Paul Dirac’s book played similar role for quantum mechanics. Both books

present their respective subjects in a beautiful and logical way, and both are inspired

by mathematics. The moral here is that there are some students that learn best by

understanding the overall logic of the formalism first, and only then embark on

applications and problem solving. This is certainly not a universal way to learn,

and most likely not the way to approach the subject for the first time. But it was

important to the present author in his time as a student to have accounts of the usual

subjects that concentrate more on the overall logic and the mathematical formalism,

rather then on concrete problems that can be solved. The author hopes that there are

similar minds out there, and that the present exposition will help such students to

understand what General Relativity is about.

In terms of the specialised knowledge that is required to understand this book,

we do not assume any more than is usually assumed for graduate level courses.

Familiarity with concepts of differential geometry is desirable, but the aspects of

this subject that are required to understand the present text are reviewed in the first

chapter. So, a good graduate student should be able to follow this exposition without

too much difficulty.

Thus, this book is mainly about different possible formalisms for doing calcu-

lations with GR, rather than about different possible physical consequences of

this theory. So, this book certainly does not compete with the standard textbook

expositions of GR, and the student must also study these more standard sources

to understand the physics as predicted by General Relativity. Excellent books on

the subject that became the standard sources are ”General Relativity” by R. Wald

and ”Spacetime and Geometry: An Introduction to General Relativity” by S. Carroll

for GR in general, and ”Physical Foundations of Cosmology” by V. Mukhanov for

applications to cosmology.

For the experienced researchers, the author suggests this book as a source on

aspects of General Relativity that are important about this theory, especially in four

spacetime dimensions, but are not covered in any standard book on the subject.

Thus, the book can be used as a compendium on different available formalisms

for GR, as well as on some less standard aspects of geometry that are required to

develop these formulations. Additional motivations for why this or that different

formulation of GR may lead to new developments and/or new generalisations are

given in the concluding chapter.

We end by explaining why it is the quote from Gregory Skovoroda that we chose

to be an epigraph for this whole exposition. First, the present author is a Ukrainian,

and it gives him a distinct pleasure to be able to quote Skovoroda, who was a

deep thinker years ahead of his times, and who is still relevant today. He is almost

unknown in the West, and maybe one of the readers will remember the name, and

read his texts.
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Second, we aim here to explain only simple, but in our view important things

about General Relativity in four spacetime dimensions. There is much more that can

be said, and there is a great wealth of physical phenomena that the theory predicts

and describes, and that we omit. Not because they are unimportant - on the contrary,

they are the reason why physicists learn the subject. But rather because they are

unnecessary to understand the overall logic of the theory. It is this overall logic

and the facts likely needed to ”move to the unknown” that will concern us in the

present book. And so we concentrate here only on things necessary to understand

the overall logic of gravity, and hence only on things simple. We hope the reader

will take this as a word of encouragement to follow the development of different

formalisms described here.

Finally, I would like to thank my collaborators, from whom I learned a lot and

without whose insight this book would not exist. Particular thanks are to Joel Fine,

Yannick Herfray, Yuri Shtanov and Carlos Scarinci. Thanks also go to my family

for their support of ”papa” working on his ”kniga”.
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Introduction

[The tensor calculus] is the debauch of indices.

´

Elie Cartan, from Introduction to ”Lecons sur la Geometrie des Espaces
de Riemann”, 1928

In 1907, while still working as a clerk in a patent office in Bern, Albert Einstein

had what he later referred to as ”the happiest thought” of his life. He realised that

a freely falling observer does not experience gravity, and thus effects of gravity

are indistinguishable from those arising in an accelerating frame. These ideas were

developed in two papers he published in 1908 and 1911. In these papers Einstein

argued that the rules of special relativity must continue to be applicable in an

accelerated reference frame. This in particular led him to analyse experiences of an

observer performing experiments on a rotating turntable. Einstein concluded that

the ratio of the circumference of a circle to its diameter that this observer would

measure would be different from ⇡. What this meant for Einstein was that if effects

of gravity are those of a non-inertial coordinate system, and the geometry in the

later is different from the Euclidean one, then gravity is geometry.

Einstein then searched for a mathematical description of this idea. On return

in 1912 to his alma mater ETH Zurich he turned for help to his friend and class-

mate, now a professor of mathematics Marcel Grossmann. Grossmann directed

Einstein’s attention to Riemannian geometry, the only developed at that time type of

geometry that had its origin in Gauss’ work on the intrinsic geometry of 2-surfaces

in 3-dimensional space. Bernhard Riemann lay the foundation of the subject in

his famous 1854 G¨ottingen habilitation lecture ”On the hypotheses that underlie

geometry”. In this lecture he described the way to extend the Gauss’ notion of

curvature to an ”n-ply extended magnitude”. Thus, by the time Einstein studied

this subject, it was far from being new. Einstein learned it in the form described in

1900 exposition by Gregorio Ricci and Tulio Levi-Civita ”Methods of the absolute

differential calculus and their applications”. In a joint 1913 paper with Grossmann,
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Figure 0.1 Bernhard Riemann

Einstein described ”an outline” of a new gravity theory using precisely this language.

The final version of the new theory of gravity was developed by late 1915, still

using the language of tensor calculus. By this time Einstein was already in Berlin,

and this work appeared single-authored. It is this 1915 theory that is now known as

Einstein’s General Relativity. To a considerable extent, even this day it is taught and

applied using the 19th century language of tensor calculus.

Bernhard Riemann was born on September 17, 1826 in Breselenz, a village in
the Kingdom of Hanover. His father was a poor Lutheran pastor. Riemann was the
second of six children, shy and of not very strong health. His mother died when he
was 20, and his brother and 3 of his sisters all died young, as eventually did he.
Riemann exhibited exceptional mathematical skills, such as calculation abilities,
from an early age but suffered from a fear of speaking in public.

Even though Riemann was very gifted in mathematics, he planned to study
theology and become a pastor, like his father. In 1846 his father gathered enough
money to send him to Göttingen to study theology. However, once there Riemann
started attending mathematics lectures by Gauss. The latter recommended that
Riemann gives up his theological work and goes into mathematics. After gaining
father’s approval Riemann transferred to Berlin in 1847, and returned to Göttingen
in 1849. He defended his doctoral dissertation in 1851, on what we now call
Riemann surfaces. He held his first lectures in 1854. His habilitation lecture has
founded the field of Riemannian geometry. In 1859, following Dirichlet’s death, who
occupied Gauss’ chair since 1855, Riemann became the head of mathematics at
Göttingen.
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In 1862 Riemann married Elise Koch and they had a daughter. He fled Göttingen
in 1866 when the armies of Prussia and Hanover clashed there. He died in Italy the
same year from tuberculosis. Riemann was a dedicated Christian, and saw his life
as a mathematician as another way to serve God. During his life, he held closely
to his Christian faith and considered it to be the most important aspect of his life.
At the time of his death, he was reciting the Lord’s Prayer with his wife and died
before they finished saying the prayer.

But roughly around the same time a French mathematician

´

Elie Cartan was

developing a very different type of geometry. In Cartan’s work on differential

geometry, the notions of differential forms and fibre bundles, both of which he

to a large extent established, played central role. Both of these will play a crucial

role in this book too. Also, in 1913, constructing linear representations of Lie

groups, Cartan discovered spinors. This will be important in our exposition as

well. It was realised much later, in 1954 book ”The algebraic theory of spinors”

by another French mathematician (and one of the founding members of Bourbaki

group) Claude Chevalley, that spinors and differential forms are very closely related.

We will explain this fact in due course.

Cartan was led to the notion of differential forms in his 1901 work developing

a geometric approach to partial differential equations. What Cartan was after was

a formalism that is invariant under arbitrary changes of variables. Cartan’s main

tool for this was the calculus of differential forms. Cartan then worked on problems

of group theory, and in particular, as we already mentioned, discovered the spinor

representations of the orthogonal groups in 1913.

Theory of Lie groups is intimately related to geometry. It is thus no surprise that

Cartan turned to the later. He was also motivated by Einstein’s theory of gravity

that came to prominence in 1919. It is in Cartan’s works of 1920’s that his most

important contributions to differential geometry were developed. Cartan’s main

realisation was that it is fruitful and necessary to consider other ”bundles” apart from

the tangent bundle, and other ”connections” apart from the Levi-Civita connection.

We took the words bundles and connections in quotes because these notions were

only beginning to be understood in Cartan’s works. In particular, Cartan himself,

while working with different bundles extensively, never explicitly defined what is

now known as a (principal) fibre bundle. Cartan was also responsible for a notion of

what is now known as the (principal) connection, and in particular realised that such

a connection is best described as a (Lie algebra valued) one-form. Cartan was thus

able to disassociate the notion of the connection and parallel transport from the very

restricted form these take in the context of affine connections in the tangent bundle.

This led him to discovery of many new types of geometry, thus finding probably

the most fruitful generalisation of Riemannian geometry. This was searched by
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Figure 0.2

´

Elie Cartan

many around the same time, in particular by Hermann Weyl, but it was Cartan who

achieved this goal. As a bonus of his general programme on connections, Cartan was

also able to give a very powerful and simple description of Riemannian geometry,

in his 1925 paper ”La g´eom´etrie des espaces de Riemann”. In the preface to his

1928 book ”Leçons sur la g´eom´etrie des espaces de Riemann” he stated his aim

as that of bringing out the simple geometrical facts which have often been hidden

under a debauch of indices. It is this Cartan’s description of Riemannian geometry

that we will present under the name of ”tetrad” formalism for GR.

Élie Cartan was born on 9 April 1869 in Dolomieu (near Chambéry), region
Rhône-Alpes, France. His father was a blacksmith. The family was very poor, and
it would be impossible for Élie to get good education if not for his talent for
mathematics that was early spotted. Already at primary school Élie impressed his
teachers. One of them later said: ”Élie Cartan was a shy boy, but his eyes shone
with an unusual light of great intelligence”. Still, Cartan could have never become
a great mathematician if not of a young school inspector, later important politician
Antonin Dubost. Dubost was visiting the school where the young Élie was taught
and was impressed with young boy’s talent. He encouraged Élie to participate in a
competition for state funds that could enable him to study in a Lycée. Élie’s school
teacher M Dupuis prepared him for the competitive examinations that were held in
Grenoble. Excellent performance allowed Élie to study in good schools, and then
later at the École Normale Supériere in Paris.
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In ENS Cartan became a student of Gaston Darboux, the inventor of the moving
frame method, which Cartan later greatly developed. Cartan’s friend Arthur Tresse
was studying under Sophus Lie in Leipzig, and told Cartan about remarkable work
by Wilhelm Killing on classification of finite groups of continuous transformations.
Cartan then set to complete Killing’s work, and corrected some important mistakes
and omissions in it. This became Cartan’s doctoral dissertation. In one way or
another, Cartan’s whole scientific career revolved around the questions related to
Lie groups and their geometry.

Cartan was a lecturer at the University at Montpellier from 1894 to 1896, and
a lecturer at the University of Lyons, where he taught from 1896 to 1903. In 1903
he married Marie-Louise Bianconi (1880-1950), the daughter of a professor of
chemistry there. The family moved to Paris in 1909, where Cartan was appointed
first at Sorbonne and later at ENS. Cartans had four children. The eldest son Henri
has become a renowned mathematician of his own. The second son Jean, a composer
of fine music, died of tuberculosis in 1932 at the age of 25. Their third son Louis
became a physicist. He was a member of the Resistance fighting in France against
the occupying German forces, and was arrested and executed by the nazis in 1943.
Cartan was 75 at the time when he learned of his third son’s fate, and this was a
devastating blow for him. The fourth child of the family was a daughter Hélène who
became a teacher of mathematics.

Cartan died in Paris in 1951, at the age of 82. Cartan’s obituary by Chern and
Chevalley opens with the words: ”Undoubtedly one of the greatest mathematicians
of this century, his career was characterized by a rare harmony of genius and
modesty”.

Cartan’s more general connections were rediscovered by physicists only much

later, in 1954 work by Yang and Mills. Every known interaction in Nature is now

described by a gauge field or connection, of precisely the type that was first intro-

duced by Cartan in his differential geometry work of 1920’s. Of course Cartan did

not write the Yang-Mills field equations, as his motivations were entirely different

from those of particle physicists of the 1950’s. It was thus Cartan who developed

mathematics that is necessary to formulate gauge theories, and that can also be used

to describe gravity. It is rather unfortunate that the theory of gravity is usually taught

in the 19th century language of tensor calculus and not in the 20th century language

of principal connections in fibre bundles. Not only this second language is more

clear – the debauch of indices is no longer there – but it is also more computationally

efficient due to its usage of differential forms, and brings gravity closer in form

to all the other interactions. We hope this book will serve to promote Cartan’s

language of differential forms and connections as the most appropriate one not just

for Yang-Mills theory but also for gravity.
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It must be admitted that for someone who is raised on notions of indices and

tensor calculus, absorbing Cartan’s geometric ideas is a rather difficult task. This is

in particular manifested by the fact that Cartan’s work on differential geometry was

recognised to be of importance only late in his life. Quoting Cartan’s obituary by

Shiing-Shen Chern and Claude Chevalley, written in 1951, Cartan’s ”death came

at a time when his reputation and the influence of his ideas were in full ascent”.

However, even in 1938 Hermann Weyl, in reviewing one of Cartan’s books, wrote:

”Cartan is undoubtedly the greatest living master in differential geometry. . . . I must

admit that I found the book, like most of Cartan’s papers, hard reading. . . .” This

sentiment was shared by many geometers at the time. The situation has changed

however. Differential geometry is now taught, at least to mathematicians, in a way

that incorporates Cartan’s geometric ideas from the start. It is time that this powerful

language is also taken on board by the (gravitational) physicists.

Having given the praise to Cartan’s ideas, it should be said that the tetrad for-

malism is described in most standard textbooks on GR, often under the name of

”non-coordinate bases”, see e.g. Sean Carroll’s book and/or ”Geometry, topology

and physics” by Mikio Nakahara. This formalism, however, is described only as

secondary to the usual metric one. In particular, the spin connection, which is the

central object that the tetrad formalism introduces, is considered to be only an object

derived from the usual Christoffel connection. Also, the conceptual change that

the tetrad formalism brings with itself, namely the fact that it works with a vector

bundle different from the tangent bundle, is rarely emphasised, while this is the

central point. Moreover, the presentation of the tetrad formalism in GR literature in

fact avoids introducing any other bundle. The presentation of the tetrad formalism

to be given in this book is different from the standard treatment in GR texts and is

closer to the ones appearing in the mathematical literature.

Moreover, while a description of the tetrad formalism can often be found in the

GR literature, it is rarely given any significance. Indeed, the usual attitude is that

it is only a reformulation of GR, and moreover one that increases the number of

field components that one has to work with, from 10 metric components in four

dimensions in metric GR, to 16 tetrad components. This is clearly in the direction

of loss of economy, and is this appears to be a clear reason against using the tetrads.

Furthermore, the tetrad formalism uses two different types of indices, the spacetime

indices for vectors and forms on a manifold, and ”internal” indices for objects valued

in the vector bundle on which the tetrad formalism is based. The usual attitude to

this is that this leads to a notational nightmare. Why then use a formalism with

two types of indices if in the metric GR it is possible to work with only spacetime

indices? Thus, the usual attitude to tetrads in the GR community is that this is a

cumbersome formalism, which brings with it nothing new, and is therefore not worth

the effort. It is nevertheless admitted that spinors can only be coupled to gravity
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by using the tetrads. But one is rarely interested in gravity effects caused by spinor

matter, usually an effective description of matter using perfect fluids is completely

sufficient to extract interesting physics. So, even though spinors do require tetrads,

one rarely needs spinors in GR.

Yet another seemingly compelling reason to ignore tetrads is the description

of the linearised excitations of the gravitational field. These carry spin two. As

such, it appears to be natural to describe them by rank two tensors. The linearised

dynamics is then readily available by either linearising the Einstein equations, or by

looking for a second order differential operator that is invariant under the linearised

diffeomorphisms. Both procedures uniquely lead to the same linearised dynamics.

The attitude of the particle physics community is then that Einstein’s theory gives a

non-linear completion of this linearised description, which is moreover to a very

large extent unique. This point of view has been advocated in Weinberg’s book

”Gravitation and Cosmology”. From this point of view it appears to be unnatural to

use any other object to describe gravity other than the metric.

Both arguments agains the usage of tetrads actually underestimate the power of

the formalism of differential forms. Yes, the tetrad carries more components, but

the amount of gauge has also increased. And it is often the case in mathematics that

a formalism that uses more independent functions allows for a simpler description.

That this is the case with the tetrad formalism is manifested by the fact that the

gravitational action in the tetrad formalism is just quartic in the basic fields, while

the Einstein-Hilbert metric action is non-polynomial in the metric. Thus, the tetrad

formalism gives an algebraically simpler description of the gravitational field. And

working with objects with different types of indices is not a problem once an

appropriate formalism is developed. Indeed, having fields with two different types

of indices does not cause any problems in the treatment of Yang-Mills theory. Finally,

for the description of the linearised dynamics, it turns out that not only the tetrad

formalism does not make things more complicated, on the contrary, the usage of

differential forms brings with it simpler differential operators as compared to those

that arise in the metric formalism. In fact, using differential forms one achieves

a description of the spin two linearised fields that is analogous to the description

in the case of the Maxwell theory, as we shall see in Chapter 8. There is no such

analogy when one works with the metric variables. So, all in all, the formalism

of differential forms does introduce simplifications in GR ranging from the full

non-linear dynamics to the linearised treatment. So, it is brushed aside in the usual

GR texts for the wrong reasons, as we hope will become clear from the treatment in

this book.

As we have already said in the preface, this book is more than just about the tetrad

formalism. Its unifying theme is the formalisms for GR (in particular GR in four

spacetime dimensions) that are based on vector valued differential forms. Towards
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the end of the book we will develop an even more exotic alternative, in which gravity

in four dimensions will be seen to arise as the dimensional reduction of a theory of

”pure” differential forms, i.e. differential forms valued in R, in seven dimensions.

The development of all these different formulations would be impossible without

Cartan’s ideas and the example of the tetrad formalism, historically the first descrip-

tion of GR in terms of differential forms. This explains the considerable attention

given to Cartan’s type differential geometry in this book. To put it provocatively, this

book attempts to develop the theory of gravity using the 20th century differential

geometry of Cartan, forgetting Einstein’s theory of General Relativity formulated

using the 19th century language of tensor calculus as much as possible.
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Concluding Remarks

Our journey took us from the usual formalism that views GR as a dynamical theory

of Riemannian geometry of metrics through a sequence of formalisms based on

connections and differential forms to more exotic 6D and 7D constructions. It is

now time to attempt to summarise what has been learned.

In all formalisms related to Cartan’s tetrads gravity becomes very similar to Yang-

Mills gauge theory. The geometric structures that make this possible are essentially

invisible in the usual metric formulation. But gravity is not Yang-Mills. From the

geometric point of view the main difference is presence in gravity of an object that

solders the geometry of the manifold to the geometry of whatever abstract bundle

that is used. This geometric object is different in different formalisms. It is useful to

summarise this as the following table:

Table 10.1 Table of formalisms with objects that implement soldering

Formalism Soldering object

Cartan formalism Frame field or tetrad

BF formalism 2-Form field valued in the Lie algebra of Lorentz group

MacDowell-Mansouri formalism De Sitter / Anti-De Sitter connection

Pure spin connection formalism Curvature of the spin connection

Plebanski formalism Triple of self-dual 2-forms

Chiral pure connection formalism Curvature of the chiral part of the spin connection

Thus, in all these descriptions there is a geometric object that ties the geometry of

an abstract fibre bundle over a manifold to the geometry of the tangent bundle. The

metric is then constructed from this object. There is no such soldering in Yang-Mills

theory. We can therefore say that

Gravity is Gauge Theory with Soldering
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We have also seen that formalisms based on differential forms allow the equations

of gravity to be rewritten in index-free notations. In 2D this is achieved by introduc-

ing a complex linear combination of the two frame 1-forms, see (3.40). In 3D this is

achieved by constructing 1-forms with values in the Lie algebra of the appropriate

”Lorentz” group, concretely 1-forms with values in 2⇥ 2 tracefree matrices, both

for the frame field as well as for the connection, see (4.11), (4.13). Finally, in 4D

the closest one gets to an index-free formalism is via the chiral Plebanski setup.

For instance, the index-free relation (9.138) is the Einstein equation describing

the 4-sphere. In general, however, when there is also Weyl curvature present, 4D

Einstein equations can’t be naturally written in a completely index-free notation

due to the presence of the matrix  ij
representing the chiral part of the Weyl cur-

vature on the right-hand-side of Plebanski equations (5.162). Thus, field equations

of 4D gravity are like those of Yang-Mills theory in the sense that they can’t be

written solely in terms of wedge products of Lie algebra valued differential forms.

In the case of Yang-Mills theory one needs the operation of the Hodge dual to write

d⇤F = 0. In the case of gravity the analogous operation is the one required to form

the right-hand-side of Plebanski second equation in (5.162) from ⌃i
. Schematically,

the Plebanksi equations are dA⌃ = 0, which is written solely in terms of wedge

product of forms, as well as F = ”⇤⌃”, where the ”Hodge star” in quotes is the

operation that produces the Lie algebra valued 2-form ( ij + (⇤/3)�ij)⌃j
from

the Lie algebra valued 2-form ⌃i
.

The analogy with Yang-Mills indexYang-Mills becomes even more pronounced in

the pure connection formalism, where the field equations take the form dA”⇤F” = 0.

Now the ”Hodge star” is the operation (6.14) that is necessary to produce the Lie

algebra valued 2-form ⌃i
F from the curvature 2-forms. In both YM and GR it is the

presence of these ”Hodge stars” that prevents the equations to be writable solely in

terms of wedge products of differential forms.

In terms of the computational efficiency, we have seen that 4D chiral formalisms

are clearly superior in terms of their economy. In these formalisms, the connection

components necessary for the computation of the curvature are stored very com-

pactly and computations required to write Einstein equations proceed with minimal

effort. This is true both in the case of the original Plebanski description that works

with 2-forms ⌃i
and connection Ai

, as well as for the pure connection formalisms

that work with either solely Ai
or Ai

and the auxiliary matrix M ij
.

We have also seen that the description of the linearised gravity and the gravi-

tational perturbation theory simplifies greatly by the use of the chiral formalisms.

First, the usage of chiral objects brings with it completely new types of differential

operators, see Figure 8.1. This allows to write the familiar spin one and spin two

kinetic terms in a completely new way, see e.g. (8.158) for how the usual linearised
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Lagrangian for the spin two perturbation hµ⌫ gets compactly re-written by the use

of the chiral 2-form fields ⌃i
µ⌫ .

The propagators and interaction vertices also get simplified by the chiral formal-

ism. The gravitational action becomes polynomial in the fields in any first order

formalism. However, all such formalisms apart from the chiral ones introduce ”too

many” auxiliary fields. This is manifested by the fact that the two-point function of

the auxiliary field with itself is non-zero in all but the chiral formalisms. This is the

case in the chiral description of YM, see (8.98), as compared to the non-chiral ver-

sion, see (8.158), as well as in the chiral description of GR as compared to standard

GR, as we have verified in the Section on Plebanski perturbation theory. The chiral

perturbation theory for GR that we have developed in this book may well hold a lot

of potential. It would be interesting to try to use it to simplify computations ranging

from quantum loops to the perturbative calculations that are necessary to extract the

gravitational wave signals.

In the last Chapter we have developed an even more exotic viewpoint on 4D

gravity, one that puts at the forefront the total space of the bundle of 2-component

spinors over the 4-dimensional manifold M in question. The projective version of

this bundle is known as the twistor space of M . The usual twistor story emphasises

the complex analytic aspects of the twistor space. This, however, only works when

the geometry of M is chiral in the sense that only one of the two chiral halves of

the Weyl curvature is non-zero.

We have seen that there exists a version of the twistor story that works in the

circle bundle over twistor space instead. This is a 7D manifold, and the geometric

data on M define a certain natural 3-form C on it. There is then a natural first

order differential equation that can be imposed on M , namely dC = �⇤C, where

� is a constant. Such 3-forms are called nearly parallel and define a 7D metric

via (9.146). Moreover, this metric is automatically Einstein with non-zero scalar

curvature. Requiring that this equation is satisfied for the 3-form that is defined by

the 4D data imposes Einstein-like equations on these data. We have then seen that

the usual twistor story with its integrable almost complex structures lifts naturally

to this 7D description. In particular, the first order Cauchy-Riemann guaranteeing

integrability of the almost complex structure on the twistor space follow from the

first order nearly parallel condition dC = �⇤C satisfied by the 3-form.

Importantly, the described 6D and 7D viewpoint on 4D gravity is crucially based

on precisely its chiral version to which we devoted so much attention in this book.

This is manifested particularly strongly by the example of the quaternionic Hopf

fibration in Section 9.3. This example shows the chiral 4D description of the 4-

sphere with its chiral 2-forms ⌃ and the chiral connection A arising from the

geometry of the total space of the Hopf 3-sphere bundle over S4
. A related point is

the fact that the Urbantke formula (5.37) that appears somewhat mysteriously in the
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chiral 4D descriptions gets explained by the observation that it is the dimensionally

reduced to 4D version of the formula (9.146) for the metric defined by a generic

3-form in 7D, see (9.148).

At the same time, the higher dimensional descriptions that we developed suffer

from a very serious defficiency - they only work for the Euclidean version of the 4D

gravity. This is the case for both the usual twistor description, which is only capable

of describing the half-flat Euclidean gravitational instantons, as well as for the 7D

description in terms of 3-forms that we developed. It is clear that if there is any truth

in the higher dimensional perspective of the type described, it should be possible to

find also the version appropriate for the Lorentzian signature.

Let us end this discussion by listing questions that, in the opinion of this author,

hold greatest potential to lead to a breakthrough in our understanding of gravity.

The first question was already mentioned in Section 3 introducing formalisms based

on differential forms. It is ”Why non-zero metric?” To expand on this, we now know

that if there is a non-zero metric filling the Universe, then its low-energy dynamics

can only be described by General Relativity, at least in 4D. At the same time, GR

is unable to answer the question as to why such a non-zero metric exists. The

same is true about any of its reformulations described in this book, even though re-

formulations based on differential forms seem to come closer to an eventual answer

because in these formulations one can at least talk about zero field configurations.

So, it is clear that answering the ”Why non-zero metric?” question will require

radically new ideas. It is possible that the puzzle of gravity can only be solved by

answering this question.

The second question that we believe is also of fundamental importance is more

well-posed, and so can probably be answered in the near future. This is the question

of interpretation of the Lorentzian signature Urbantke formula (5.47). In our discus-

sion following (9.148) we have seen that the Euclidean signature Urbantke formula

can be understood as being a consequence of (9.146) defining a 7D metric from a

stable 3-form. Thus, we have seen that assuming that the 7D manifold is fibered

by 3-dimensional submanifolds on which the 3-form is non-zero exhibits the 4D

Urbantke metric as the one induced on the 4D slices transverse to the fibres. The

same interpretation exists for the Spit signature metrics in 4D. This also follows

from the 7D formula (9.146) but for C lying in the orbit of different sign, the one

for which the metric defined by C is of signature (3, 4). However, there is no such

interpretation to the Lorentzian signature Urbantke that works with complex-valued

2-forms but still produces a real-valued metric. It is clear that if there is an interpre-

tation that is related to 3-forms in seven dimensions, it must involve complex-valued

forms in some way. We believe that finding such an interpretation, if it exists, holds

potential for a breakthrough in understanding of 4D Lorentzian signature gravity, as

providing a deeper geometric structure behind it.
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We end this book by a provocative remark. General Relativity is the unique

low energy theory of interacting massless spin two particles. This statement holds

independently of any Lagrangian formulation that may be used to describe it. The

usual metric formalism is by far the most explored one. But in this book we have

see that, surprisingly, GR admits many not obviously equivalent formulations. In

fact, GR appears to be the theory that admits by far many more reformulations than

any other known theory. This is one ”experimental fact” about GR that is rarely

emphasised, and that we believe becomes strikingly apparent from the developments

we have followed. We don’t know what is the significance of this fact, if any, but it

may be that gravity is trying to tell us something by this fact. It is possible that the

message is: ”I am more than just an effective low energy theory of massless spin

two particles, I hold the key to the puzzle of why the Universe can be so successfully

described in geometric terms”.
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of lines, as projective twistor space, 326

gravitational instanton, 185, 187, 261, 263, 352

pure connection description of, 229

gravitational waves, 381

graviton, 268

group action, 45

on itself, 45

orbit of, 46

group coset, 46

as orbit of group action, 46

group homomorphism, 45

Hamiltonian analysis, 111

Hodge star, xii, 140, 193, 320, 357, 380

commutativity with Riemann, 143

determining conformal metric, 149

holonomy, 358

Holst term, 123, 146

Hopf coordinates, 223, 370

incidence relation, in twistor space, 328

index-free notation, 135, 351, 380

interior product, 25

inverse densitiesed metric, 288

isometry, 39

K¨ahler form, 367

K¨ahler potential, 232

Kaluza-Klein, 58, 94, 119, 320

Lagrange multiplier field, 122, 182, 194, 202

Leibnitz rule, 73, 75

Levi-Civita connection, 77, 101, 103, 110, 142

Lichnerowicz Laplacian, 89

Lie bracket, 25, 33

Lie derivative, 33

commutativity with exterior derivative, 34

computation of, 34

Lie group, 40

light cone, 321, 323

linearisation

of chiral pure connection action, 187, 190, 259, 261

of Einstein-Cartan action, 115

of Einstein-Hilbert action, 87, 89, 91

of MacDowell-Mansouri action, 117

of Plebanski action, 185

of pure spin connection action, 126

Lorentz group, 52, 53, 98, 110, 123, 140, 141, 146,

160, 193, 268, 321, 325, 347

M¨obius strip, 20

MacDowell-Mansouri formalism, 116, 117, 121, 185,

203

magic formula, 33

manifold, 9

complex, 340

integral, 35
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orientation of, 19

smooth, 10

topological, 10

Maurer-Cartan 1-form, 107

Maxwell theory, 121, 320

metric, 36

Einstein, xii, 85, 142

from a 3-form in 7 dimensions, 355

Hermitian, 44, 340

K¨ahler, 232

pull back of, 37

why non-zero question, 96

metricity constraints, 186, 198

Minkowski space, 161

Newmann-Penrose formalism, 193

non-metricity, 112

normal subgroup, 45

operator

covariant derivative, 72

covariant exterior derivative, 73

creation-annihilation, 80

Dirac, xii, 277, 302

exterior derivative, xii, 15

exterior derivative as Dirac, 281

Hodge, 140

Lichnerowicz, 89, 91

Page metric, 222

Palatini formalism, 92

parabolic subgroup, 326

perfect connection, 229, 232

perfect fluid, 7, 192

perturbation theory, 380

chiral, 294

chiral connection, 311

metric, 287

Yang-Mills, 289

Petrov classification, 192

Pfaffian, 36

Pl¨ucker coordinates, 323, 329

Plebanski formalism, 149, 172, 181, 193, 235, 261,

283, 295, 311, 351, 353, 356, 380

matter coupling, 190

Pontryagin term, 147, 185, 230

principal bundle, 58

cross-section of, 63

Hopf, 68

trivialisation of, 62, 63

principal connection

curvature of, 64

pullback

bundle, 56

differential form, 16

function, 16

pure connection action for GR, 208

push forward, 22

quantum group, 137

quaternionic Hopf fibration, 346, 355

quaternions, 163, 325, 334, 345

Ray-Singer torsion, 137

reality conditions, 147, 174, 182, 207, 250, 325

compatibility with dynamics, 252

renormalisation of the action, 117

Ricci tensor, 76

Schwarzschild solution, 181

second class constraints, 111, 147

semi-definite connection, 212

sign of a connection, 212

singularity, 244, 267

soldering form, xiii, 99, 101, 110, 122, 379

chiral, 173

spinor expression, 273

spherically symmetric problem, 107, 178, 244, 255,

319

spin connection, 6, 102, 111

chiral part of, 170, 181

chiral part of, on S4
, 342, 350

formalism for 3D gravity, 137

formalism for GR, 114, 123, 380

spin foam models, 123

Spin group, 79

spinor, xii, 3, 9, 52, 54, 66, 77, 149, 193, 268, 293, 315,

321, 325, 336, 360, 361

as differential form, 80, 82

primed, unprimed, 270

raising-lowering of indices, 271

spinor helicity formalism, 282

stable forms, 355, 357

Stelle-West formalism, 118

stress-energy tensor, 190

symmetry, 44

symplectic form, 44

tangent space, 22

Taub-NUT metric, 234

Teleparallel formalism, 112

tensor, 28

contraction of, 29

geometric structure, model of, 99

tensor calculus, xiii, 2, 8

tensor product, 27

tetrad, xiii, 6, 97, 173, 174, 268

theorem

Frobenius, 36

Newlander-Nierenberg, 353

Newlander-Nirenberg, 378

Stokes, 19, 21

torsion, 76, 98, 102, 111, 112, 135, 176, 199

Turaev-Viro model, 137

twistor, xiii, 322

as a pair of spinors, 325

double fibration, 326

Euclidean, fibre bundle structure of, 334

Hermitian form on twistor space, 333

isomorphism, 151, 166
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Urbantke metric, 153, 159, 174, 182, 205, 212, 264,

356

vector bundle, 69

associated, 71, 98

cross-section of, 69

transition function, 69

vector field, 22

as derivation, 24

horizontal, 56, 63, 67

integral curve of, 31

involution of, 35

left-invariant on a group, 48

Lie algebra of, 47

Lie bracket, 25, 33

projectable, 23

velocity, 31, 50

vertical, 56

wedge product, 14

wedge product metric, 150, 152

Yang-Mills, 5, 7, 96, 101, 147, 230, 269, 289, 311, 318


